Open
Close

Скорость передачи данных по блютуз 4.0. Все о Bluetooth. Применение блютуз в быту

Интерфейс Bluetooth Core Specіfіcatіon Versіon 3.0 Hіgh Speed (HS) или попросту Bluetooth 3.0 представлен официалъно. Рaбочая группа Bluetooth SіG* спpaвиласъ со всем вовремя.< А теперъ неболъшой урок ликнепа для тех, кто слышит о новинке впервые.

Что такое Bluetooth 3.0?
Все просто и понятно. Это следующее поколение интерфейса стандарта Bluetooth, точнее технология, позволяющая передаватъ данные между двумя электронными устройствами без помощи проводов. Но в отличии от версии Bluetooth 2.1+EDR интерфейс 3.0 paботает быстрее.

А насколъко быстрее?
Намного. Новый стандарт стал значителъно шустрее своего предшественника. В нем зафиксирована поддержка обмена информацией со скоростями до 24 Мбит/с. Как известно, возможности Bluetooth 2.1+EDR (Enhanced Data Rate) огpaничены значением 3 Мбит/с.

И что?
А то, что новые устройства, соответствующие спецификаций Bluetooth 3.0, будут в восемъ paз быстрее тех, которыми мы полъзуемся сегодня. А это значит, что на беспроводную синхронизацию звукозаписей между ПК и проигрывателем или телефоном, передачу фотоснимков в напpaвлении принтеpa или ПК, отпpaвку видеозаписей с или телефона на компъютер или телевизор и т.п. мы будет тpaтитъ поменъше своего дpaгоценного времени.

А откуда такое ускорение?
Повышение скорости обеспечивает исполъзование в качестве тpaнспорта протокола іEEE 802.11 (Wі-Fі).

Стоп! Так это обычный Wі-Fі?
Шоб да!, так нет!. Bluetooth 3.0 совместим с іEEE 802.11 (Wі-Fі), но взаимодействие между передающим и принимающим устройствами будет построено по схеме, подобной схеме ad-hoc, не требующей входа в сетъ Wі-Fі. Но естъ еще нюансы. Для достижения максималъно возможной скорости необходимо, чтобы каждое из двух устройств имело не толъко Bluetooth-, но и 802.11-модулъ. В процессе соединения передающее устройство спросит устройство, принимающее сигнал, естъ ли в нем поддержка этого более скоростного стандарта беспроводной связи.

В случае положителъного ответа файл будет передан именно по протоколу 802.11. Как толъко загрузка завершится, принимающее устройство сообщит об этом и передатчик переключится обpaтно на Bluetooth с максималъной скоростъю передачи данных 3 Мбит/с, но потребляющий менъше энергии. Если же модуля 802.11 в принимающей системе нет, то отпpaвка будет осуществлятъся посредством Bluetooth, то естъ на более низкой скорости. Так что, третъя версия протокола позволит устройствам устанавливатъ соединение друг с другом посредством Bluetooth, а саму передачу данных осуществлятъ по стандарту 802.11

А если еще болъше вникнутъ в детали, то отсутствие буквенного индекса в обозначении 802.11 можно отнести на счет отсутствия в планах paзpaботчика Bluetooth 3.0 группы SіG и Wі-Fі Allіance взаимной сертификации устройств. Другими словами, устройства с поддержкой Bluetooth 3.0, не будут совместимы с устройствами, поддерживающими 802.11b, g или n.

А как насчет совместимости со старой версией?
Не надо волноватъ свой душевный комфорт. Интерфейс Bluetooth 3.0 HS сохpaнил совместимостъ с предыдущей версией спецификации. Так что пересылатъ фотки со своего нового меганавороченного коммуникатоpa на , который вы скоро подарите бабушке, можно будет запросто. Кроме того, в Bluetooth 3.0 будет исполъзоватъся технология Enhanced Power Control (EPC), позволяющая значителъно снизитъ вероятностъ paзрыва соединения, если положитъ телефон в сумочку или, скажем, карман.

А когда эта paдостъ появится у нас?
Точно не завтpa. Официалъное утверждение спецификаций является лишъ первым шагом на пути Bluetooth 3.0 к потребителям. На втором шаге компании Atheros, Broadcom, CSR и Marvell - paзpaботчики и производители элементной базы, входящие в Bluetooth SіG, предложат свои решения с поддержкой новой спецификации изготовителям электроники. Третъего шага - появления готовых продуктов на рынке, по мнению paзpaботчиков, можно ожидатъ через 9-12 месяцев. Так что paдует пока толъко тот факт, что процесс уже необpaтим, и вскоре версия 3.0 заменит сегодняшнюю Bluetooth 2.1+EDR.

* Группа Bluetooth Specіal іnterest Group (SіG) был основан 20 мая 1998 годаи стого времени занимается paзpaботкой стандартов для данной технологии. Изначалъно в консорциум вошли Erіcsson (ныне Sony Erіcsson), іBM, іntel, Toshіba и Nokіa). Позже к ним присоединилисъ другие. К сегодняшнему дню группой было принято шестъ стандартов Bluetooth.

Bluetooth 5.0 стал реальностью. По сравнению с Bluetooth 4.0 новая версия имеет вдвое большую пропускную способность, увеличенную в четыре раза дальность действия и целый ряд других улучшений. Рассмотрим преимущества Bluetooth 5.0 над предшественниками, в том числе на примере процессора CC2640R2F от Texas Instruments .

Популярность версии протокола Bluetooth 4, а также некоторые его ограничения стали причинами для создания следующей спецификации Bluetooth 5. Разработчики ставили перед собой целый ряд целей: расширение радиуса действия, рост пропускной способности при рассылке широковещательных пакетов, улучшение помехозащищенности и так далее.

Теперь, когда стали появляться первые устройства с Bluetooth 5, у пользователей и разработчиков справедливо возникают вопросы: какие из заявленных ранее обещаний воплотились в реальность? Насколько выросли радиус действия и скорость передачи данных? Как это отразилось на уровне потребления? Каким образом изменился подход к формированию широковещательных пакетов? Какие были сделаны усовершенствования, направленные на рост помехозащищенности? И, конечно, главный вопрос — существует ли обратная совместимость между Bluetooth 5 и Bluetooth 4? Ответим на эти и некоторые другие вопросы и рассмотрим основные преимущества Bluetooth 5.0 перед предшественниками, в том числе – на примере реального процессора с поддержкой Bluetooth 5.0 производства компании Texas Instruments .

Начнем обзор Bluetooth 5.0 с ответа на самый часто задаваемый вопрос об обратной совместимости с Bluetooth 4.x

Обеспечивает ли Bluetooth 5.0 обратную совместимость с Bluetooth 4.x?

Да, обеспечивает . Bluetooth 5 перенял большинство особенностей и расширений Bluetooth 4.1 и 4.2. Например, устройства Bluetooth 5 сохраняют все улучшения Bluetooth 4.2 в области повышения защищенности данных и поддерживают расширение LE Data Length Extension. Стоит напомнить, что благодаря LE Data Length Extension начиная с Bluetooth 4.2 размер пакета данных (packet data unit, PDU) при установленном соединении может быть увеличен с 27 до 251 байта, что позволяет поднять скорость обмена данными в 2,5 раза.

Из-за большого количества различий между версиями протокола сохраняется традиционный механизм согласования параметров между устройствами при установлении соединений. Это значит, что перед тем как начать обмениваться данными, устройства «знакомятся» и определяют максимальную частоту передачи данных, длину сообщений и так далее. При этом по умолчанию используются параметры Bluetooth 4.0. Переход к параметрам Bluetooth 5 происходит только если в процессе согласования оказывается, что оба устройства поддерживают более позднюю версию протокола.

Говоря об инструментах, которые уже сейчас доступны для разработчиков, стоит отметить новый процессор CC2640R2F и бесплатный стек BLE5-Stack от Texas Instruments. К радости разработчиков, BLE5-Stack основан на предыдущей версии BLE-Stack, и изменения в его использовании коснулись только новых особенностей Bluetooth 5.0.

Как увеличилась скорость передачи данных в Bluetooth 5?

Bluetooth 5 использует беспроводное соединение с физической скоростью передачи данных до 2 Мбит/с, что в два раза выше, чем у Bluetooth 4.х . Здесь стоит отметить, что эффективная скорость обмена данными зависит не только от физической пропускной способности канала передачи, но и от соотношения служебной и полезной информации в пакете, а также от сопутствующих «накладных» расходов, например, потери времени между пакетами (таблица 1).

Таблица 1. Скорость обмена данными для различных версий Bluetooth

В версиях Bluetooth 4.0 и 4.1 физическая пропускная способность канала составляла 1 Мбит/с, что при длине пакета данных PDU в 27 байт позволяло достигать скорости обмена до 305 кбит/с. В версии Bluetooth 4.2 появилось расширение LE Data Length Extension. Благодаря ему после установления соединения между устройствами появлялась возможность увеличить длину пакета до 251 байта, что приводило к росту скорости обмена данными в 2,5 раза – до 780 кбит/с.

В версии Bluetooth 5 сохранилась поддержка LE Data Length Extension, что совместно с ростом физической пропускной способности до 2 Мбит/с позволяет достигать скорости обмена данными до 1,4 Мбит/с.

Как показывает практика, такое ускорение передачи данных не является пределом. Например, беспроводной микроконтроллер CC2640R2F способен работать со скоростями вплоть до 5 Мбит/с.

Стоит сказать и о распространенном заблуждении, что рост пропускной способности до 2 Мбит/с был достигнут за счет сокращения радиуса действия. Конечно, физически микросхема приемопередатчика (PHY) при работе с частотой 2 Мбит/с имеет на 5 дБм меньшую чувствительность, чем при работе с частотой 1 Мбит/с. Однако кроме чувствительности есть и другие факторы, которые способствуют увеличению радиуса действия, например, переход к кодированию данных. По этой причине при прочих равных условиях Bluetooth 5 оказывается более надежным и имеет больший радиус действия по сравнению с Bluetooth 4.0. Подробно об этом рассказывается в одном из следующих разделов статьи.

Как активировать высокоскоростной режим передачи данных в Bluetooth 5?

При установлении соединения между двумя устройствами Bluetooth изначально используются настройки Bluetooth 4.0 . Это значит, что на первом этапе устройства обмениваются данными на скорости 1 Мбит/с. После установления соединения мастер с поддержкой Bluetooth 5.0 может начать процедуру PHY Update Procedure, цель которой — установление максимальной скорости 2 Мбит/с. Эта операция будет успешной, только если ведомый также поддерживает Bluetooth 5.0. В противном случае скорость остается на уровне 1 Мбит/с.

Для разработчиков, ранее использовавших BLE-Stack от Texas Instruments, хорошей новостью станет то, что для выполнения приведенной процедуры в новом стеке BLE5-Stack выделена одна единственная функция HCI_LE_SetDefaultPhyCmd(). Таким образом при переходе на Bluetooth 5.0 у пользователей продуктов TI первоначальная инициализация не вызовет проблем. Также для разработчиков будет полезен пример, выложенный на портале GitHub , который позволяет оценить работу двух микроконтроллеров CC2640R2F, работающих в составе CC2640R2 LaunchPads в режимах High Speed и Long Range.

Как увеличился радиус действия Bluetooth 5?

В спецификации Bluetooth 5.0 говорится об увеличении радиуса действия в четыре раза по сравнению с Bluetooth 4.0. Это достаточно тонкий вопрос, на котором стоит остановиться подробнее.

Во-первых, понятие «в четыре раза» является относительным и не привязывается к конкретному радиусу действия в метрах или километрах. Дело в том, что дальность радиопередачи сильно зависит от целого ряда факторов: состояния окружающей среды, уровня помех, числа одновременно передающих устройств и так далее. В итоге ни один производитель, а также и сам разработчик стандарта Bluetooth SIG, конкретных значений не приводит. Увеличение радиуса действия оценивается в сравнении с Bluetooth 4.0.

Для дальнейшего анализа необходимо выполнить некоторые математические расчеты и оценить бюджет мощности радиоканала . При использовании логарифмических значений бюджет радиоканала (дБ) равен разности мощности передатчика (дБм) и чувствительности приемника (дБм):

Бюджет радиоканала = мощность T X (дБм) – чувствительность R X (дБм)

Для Bluetooth 4.0 стандартная чувствительность приемника составляет -93 дБм. Если полагать мощность передатчика 0 дБм, то бюджет составляет 93 дБ.

Увеличение радиуса действия в четыре раза потребует увеличения бюджета на 12 дБ, что дает значение 105 дБ. Как же предполагается достигать этого значения? Есть два пути:

  • увеличение мощности передатчиков;
  • увеличение чувствительности приемников.

Если идти по первому пути и увеличивать мощность передатчика, это неизбежно вызовет рост потребления. Например, для CC2640R2F переход на выходную мощность 5 дБм приводит к росту тока потребления до 9 мА (рисунок 1). При мощности 10 дБм ток увеличится до 20 мА. Такой подход не выглядит привлекательным для большинства беспроводных устройств с батарейным питанием и не всегда подходит для IoT, а ведь именно на эту область в первую очередь и ориентировался Bluetooth 5.0. По этой причине второе решение выглядит более предпочтительным.

Для увеличения чувствительности приемника предлагается два способа:

  • снижение скорости передачи;
  • использование кодирования данных Coded PHY.

Уменьшение скорости передачи данных в восемь раз теоретически повышает чувствительность приемника на 9 дБ. Таким образом до заветного значения не хватает всего 3 дБ.

Необходимые 3 дБ удается получить с помощью дополнительного кодирования Coded PHY. Ранее в версиях Bluetooth 4.х кодирование битов было однозначным 1:1. Это значит, что поток данных напрямую направлялся на дифференциальный демодулятор. В Bluetooth 5.0 при использовании Coded PHY существует два дополнительных формата передачи:

  • с кодированием 1:2, при котором каждому биту данных ставятся в соответствие два бита в потоке радиоданных. Например, логическая «1» представляется как последовательность «10». При этом физическая скорость остается равной 1 Мбит/с, а реальная скорость передачи данных падает до 500 кбит/с.
  • С кодированием 1:4. Например, логическая «1» представляется последовательностью «1100». Скорость передачи данных при этом уменьшается до 125 кбит/с.

Описанный подход называется Forward Error Correction (FEC) и позволяет обнаруживать и исправлять ошибки на приемной стороне, а не запрашивать повторную передачу пакетов, как это было в Bluetooth 4.0.

На бумаге все выглядит неплохо. Остается только выяснить, насколько эти теоретические выкладки соответствуют реальности. В качестве примера возьмем все тот же микроконтроллер CC2640R2F. Благодаря различным улучшениям и новым режимам модуляции Bluetooth 5.0, приемопередатчик этого процессора имеет чувствительность -97 дБм при скорости обмена 1 Мбит/с и -103 дБм при использовании Coded PHY и скорости обмена 125 кбит/с. Таким образом в последнем случае до уровня 105 дБ не хватает всего 2 дБм.

Для оценки радиуса действия CC2640R2F инженеры из Texas Instruments провели полевой эксперимент в городе Осло. При этом с точки зрения уровня шумов окружающую среду в данном опыте нельзя назвать «дружелюбной», так как в непосредственной близости находилась деловая часть города.

Для получения бюджета мощности больше 105 дБ было решено увеличить мощность передатчика до 5 дБм. Это позволило достичь внушительного итогового значения в 108 дБм (рисунок 2). При выполнении эксперимента дальность действия составила 1,6 км, что является весьма впечатляющим результатом, особенно – если учесть минимальный уровень потребления радиопередатчиков.

Как изменился подход к широковещательным сообщениям Bluetooth 5?

Ранее в Bluetooth 4.x для установления соединений между устройствами использовалось три выделенных канала данных (37, 38, 39). С их помощью устройства находили друг друга и обменивались служебной информацией. По ним же можно было передавать широковещательные пакеты данных. Такой подход имеет недостатки:

  • при большом количестве активных передатчиков эти каналы можно попросту перегрузить;
  • все больше устройств использует широковещательные посылки без установления соединения «точка-точка». Это особенно важно для интернета вещей IoT;
  • новая система кодирования Coded PHY потребует в восемь раз больше времени на установление соединения, что дополнительно будет нагружать широковещательные каналы.

Чтобы решить эти проблемы в Bluetooth 5.0, было решено перейти к схеме, при которой данные передаются по всем 37 каналам данных, а служебные каналы 37, 38, 39 используются для передачи указателей. Указатель отсылает к тому каналу, по которому будет производиться передача широковещательного сообщения. При этом данные передаются всего лишь один раз. В итоге удается значительно разгрузить служебные каналы и устранить это узкое место.

Также стоит отметить, что теперь длина данных широковещательного пакета может достигать 255 байт вместо 6…37 байт PDU в Bluetooth 4.x. Это чрезвычайно важно для приложений IoT, так как позволяет минимизировать накладные расходы на передачу и обойтись без установления соединений, а значит и сократить уровень потребления.

Поддерживает ли Bluetooth 5 Mesh-сети?

Решения от Texas Instruments для Bluetooth 5

Одним из самых первых микроконтроллеров с Bluetooth 5.0 стал высокопроизводительный процессор CC2640R2F производства компании Texas Instruments.

CC2640R2F построен на базе современного 32-битного ядра ARM Cortex-M3 с рабочей частотой до 48 МГц. Работой радиопередатчика управляет второе 32-битное ядро ARM Cortex-M0 (рисунок 3). Кроме того, CC2640R2F отличается богатой цифровой и аналоговой периферией.

Достоинством микроконтроллера CC2640R2F также является малый уровень потребления (таблица 2). Это относится ко всем режимам работы. Например, в активном режиме при приеме данных по радиоканалу потребление составляет 5,9 мА, а при передаче – 6,1 мА (0 дБм) или 9,1 мА (5 дБм). При переходе в спящий режим питающий ток и вовсе падает до 1 мкА.

Сочетание трех таких важных качеств как поддержка Bluetooth 5.0, малое потребление и высокая пиковая производительность делает CC2640R2F весьма интересным решением для интернета вещей. При этом с помощью данного микроконтроллера можно создавать весь спектр IoT-устройств: автономные датчики, работающие несколько лет от одной батарейки , мосты между дополнительным управляющим процессором и каналом Bluetooth 5.0, сложные приложения, требующие высокой вычислительной мощности.

Таблица 2. Потребление беспроводного микроконтроллера CC 2640 R 2 F с поддержкой Bluetooth 5

Режим работы Параметр Значение (при Vcc = 3 В)
Активные вычисления мкА/МГц ARM® Cortex®-M3 61 мкА/МГц
Coremark/мА 48,5
Coremark при частоте 48 МГц 142
Радиообмен Пиковый ток при приеме, мА 5,9
Пиковый ток при передаче, мА 6,1
Режим сна Контроллер датчиков, мкА/МГц 8,2
Режим Sleep mode с включенным RTC и сохранением памяти, мА 1

Для быстрого начала работы с CC2640R2F компания Texas Instruments подготовила традиционный отладочный набор (рисунок 4). С помощью пары таких устройств можно оценить быстродействие и дальность радиопередачи по Bluetooth 5.0. Для этого можно воспользоваться готовыми примерами или создать собственное приложение на базе бесплатного протокола BLE 5 stack 1.0 (www.ti.com/ble).

Заключение

Новая версия протокола Bluetooth 5.0 ориентирована на максимальное соответствие потребностям Интернета вещей (IoT). По сравнению с версией Bluetooth 4.0, она имеет целый ряд качественных улучшений:

  • скорость передачи данных увеличилась в два раза и достигла 2 Мбит/с;
  • дальность передачи возросла в четыре раза за счет кодирования данных Coded PHY и Forward Error Correction (FEC);
  • пропускная способность широковещательных сообщений выросла в 8 раз.

Кроме того, Bluetooth 5.0 обеспечивает обратную совместимость с устройствами Bluetooth 4.x, а также поддерживает большинство расширений поздних версий протокола.

Оценить возможности Bluetooth 5.0 можно уже сейчас с помощью инструментов производства Texas Instruments. Компания выпускает высокопроизводительный и малопотребляющий микроконтроллер CC2640R2F, предоставляет бесплатный стек BLE 5 stack 1.0 и множество готовых примеров для отладочного набора LAUNCHXL-CC2640R2.

Литература

  1. Bluetooth Core Specifcation 5.0 FAQ. 2016. Bluetooth SIG.

Здравствуйте.

3 декабря 2014 года Bluetooth SIG официально анонсировала спецификацию bluetooth версии 4.2.
В пресс-релизе указаны 3 главных нововведения:

  • увеличение скорости приема-передачи данных;
  • возможность подключения к интернету;
  • улучшение конфиденциальности и безопасности.
Главный тезис пресс-релиза: версия 4.2 - идеальна для интернета вещей (IoT).
В этой статье я хочу рассказать, как реализованы эти 3 пункта. Кому интересно добро пожаловать.

Все, что описано ниже, относится только к BLE, поехали…

1. Увеличение скорости приема-передачи пользовательских данных.


Самым главным недостатком у BLE была малая скорость передачи данных. Хотя с какой стороны посмотреть, ведь изначально BLE придумывали ради сохранения энергии источника, питающего устройство. А чтобы беречь энергию, надо с перерывами выходить на связь и передавать немного данных. Однако, все равно, весь интернет заполнен возмущениями о малой скорости и вопросами о возможности ее увеличения, а также увеличения размера передаваемых данных.

И вот с появлением версии 4.2, Bluetooth SIG заявил об увеличении скорости передачи в 2,5 раза и размера передаваемого пакета в 10 раз. Как же они этого добились?

Сражу скажу, что эти 2 цифры связаны друг с другом, а именно: скорость увеличилась потому, что увеличился размер передаваемого пакета.

Посмотрим на PDU (protocol data unit) канала данных:


Каждый PDU содержит 16-ти битный заголовок (header). Так вот, этот заголовок в версии 4.2 отличается от заголовка в версии 4.1.

Вот заголовок версии 4.1:

А вот заголовок версии 4.2:

Примечание: RFU (Reserved for Future Use) - поле, обозначенное этой аббревиатурой зарезервировано для будущего использования и заполняется нулями.

Как мы видим, последние 8 бит заголовка отличаются. Поле «Length» - это сумма длин полезных данных и поля MIC (Message Integrity Check), находящегося в PDU (если последнее включено).
Если в версии 4.1 поле «Length» имеет размер 5 бит, то в версии 4.2 это поле размером 8 бит.

Отсюда несложно вычислить, что поле «Length» в версии 4.1 может содержать значения в промежутке от 0 до 31, а в версии 4.2 в промежутке от 0 до 255. Если из максимальных значений вычесть длину поля MIC (4 октета), то получим, что полезных данных может быть 27 и 251 октет для версии 4.1 и 4.2 соответственно. На самом деле максимальное кол-во данных еще меньше, т.к. в полезной нагрузке находятся еще и служебные данные L2CAP (4 октета) и ATT (3 октета), но это мы рассматривать не будем.

Таким образом размер передаваемых пользовательских данных увеличился приблизительно в 10 раз. Что же касается скорости, которая, почему-то, увеличилась не в 10 раз, а всего в 2.5 раза, то тут нельзя говорить о пропорциональном увеличении, потому, что все упирается еще и в гарантированность доставки данных, ведь гарантировать доставку 200 байт немного сложнее чем 20-ти.

2. Возможность подключения к интернету.

Пожалуй, самое интересное нововведение, из-за которого Bluetooth SIG и объявила, что версия 4.2 делает интернет вещей (IoT) лучше именно благодаря этой возможности.

Еще в версии 4.1 в L2CAP появился режим «LE Credit Based Flow Control Mode». Этот режим позволяет управлять потоком данных, используя т.н. схему, основанную на кредите. Особенность схемы в том, что она не использует сигнальные пакеты, для обозначения кол-ва передаваемых данных, а запрашивает у другого устройства кредит на определенный объем данных для передачи, тем самым ускоряя процесс передачи. При этом, принимающая сторона каждый раз при получении фрейма, уменьшает счетчик фреймов, и при достижении последнего фрейма может разорвать соединение.

В списке команд L2CAP появилось 3 новых кода:
- LE Credit Based Connection request – запрос на соединение по схеме кредита;
- LE Credit Based Connection response – ответ на соединение по схеме кредита;
- LE Flow Control Credit – сообщение о возможности получить дополнительные LE-кадры.

В пакете «LE Credit Based Connection request»


есть поле «Initial Credits» длиной в 2 октета, указывающее на кол-во LE-фреймов, которое устройство может отправить на уровне L2CAP.

В ответном пакете «LE Credit Based Connection response»


в том же поле указано кол-во LE-фреймов, которое может отправить другое устройство, а также в поле «Result» указан результат запроса на соединение. Значение 0x0000 говорит об успехе, остальные значения указывают на ошибку. В частности, значение 0x0004 указывает на отказ в соединении из-за отсутствия ресурсов.

Таким образом уже в версии 4.1 появилась возможность передачи большого кол-ва данных на уровне L2CAP.
И вот, практически одновременно с выходом версии 4.2, публикуется:

  • сервис: «IP Support Service» (IPSS) .
  • профиль IPSP (Internet Protocol Support Profile) , который определяет поддержку передачи пакетов IPv6 между устройствами, имеющими BLE.
Главным требованием профиля для уровня L2CAP является «LE Credit Based Connection» появившееся в версии 4.1, которое, в свою очередь позволяет передавать пакеты с MTU >= 1280 октетов (надеюсь намек на цифру понятен).

Профиль определяет следующие роли:
- роль маршрутизатора (Router) – используется для устройств, которые могут маршрутизировать IPv6 пакеты;
- роль узла (Node) – используется для устройств, которые могу только принимать или отправлять пакеты IPv6; имеют функцию обнаружения сервисов и имеют сервис IPSS, позволяющий маршрутизаторам обнаруживать данное устройство;

Устройства с ролью маршрутизатора, которым необходимо подключение к другому маршрутизатору могут иметь роль узла.

Как ни странно, но передача пакетов IPv6 не является частью спецификации профиля, и указывается в IETF RFC «Transmission of IPv6 packets over Bluetooth Low Energy» . В этом документе опредлен еще один интересный момент, а именно то, что при передаче пакетов IPv6 используется стандарт 6LoWPAN - это стандарт взаимодействия по протоколу IPv6 поверх маломощных беспроводных персональных сетей стандарта IEE 802.15.4.

Посмотрите на рисунок:


В профиле определено, что IPSS, GATT и ATT используются только для обнаружения сервиса, а GAP используется только для обнаружения устройства и установки соединения.

А вот выделенное красным, как раз говорит о том, что передача пакетов не входит в спецификацию профиля. Это позволяет программисту написать свою реализацию передачи пакетов.

3. Улучшение конфиденциальности и безопасности.

Одной из обязанностей менеджера безопасности (Sequrity manager) (SM) является сопряжение двух устройств. В процессе сопряжения создаются ключи, которые затем используются для шифрования связи. Процесс сопряжения состоит из 3-х фаз:
  • обмен информацией о способах сопряжения;
  • генерация краткосрочных ключей (Short Term Key (STK));
  • обмен ключами.
В версии 4.2 2-я фаза разделилась на 2 части:
  • генерация краткосрочных ключей (Short Term Key (STK)) под названием «LE legacy pairing»
  • генерация долговременных ключей (Long Term Key (LTK)) под названием «LE Secure Connections»
А 1-я фаза добавилась еще одним способом сопряжения: «Numeric Comparison» который работает только со вторым вариантом 2-й фазы: «LE Secure Connections».

В связи с этим в криптографическом тулбоксе менеджера безопасности помимо 3-х существующих функций, появилось еще 5 и эти 5 используются только для обслуживания нового процесса сопряжения «LE Secure Connections». Эти функции генерируют:

  • LTK и MacKey;
  • подтверждающие переменные;
  • переменные проверки аутентификации;
  • 6-ти значные числа, используемые для отображения на связываемых устройствах.
Все функции используют алгоритм шифрования AES-CMAC с 128-ми битным ключом.

Так вот, если при сопряжении во 2-й фазе по методу «LE legacy pairing» генерировалось 2 ключа:

  • Temporary Key (TK): 128-ми битный временный ключ, используемый для генерации STK;
  • Short Term Key (STK): 128-ми битный временный ключ, используемый для шифрования соединениЯ
то по методу «LE Secure Connections» генерируется 1 ключ:
  • Long Term Key (LTK): 128-ми битный ключ, используемый для шифрования последующих соединениЙ.
Результатом этого нововведения мы получили:
  • предотвращение отслеживания, т.к. теперь за счет «Numeric Comparison» есть возможность контролировать возможность подключения к Вашему устройству.
  • улучшение энерго-эффективности, т.к. теперь не требуется дополнительная энергия для повторных генераций ключей при каждом соединении.
  • отраслевой стандарт шифрования для обеспечения конфиденциальных данных.
Как это ни странно звучит, но за счет улучшения безопасности мы получили улучшение энерго-эффективности.

4. Есть ли уже возможность пощупать?


Да, есть.
NORDIC Semiconductor выпустил «nRF51 IoT SDK» который включает в себя стек, библиотеки, примеры и API для устройств серии nRF51. Сюда входят:

  • чипы nRF51822 и nRF51422;
  • nRF51 DK;
  • nRF51 Dongle;
  • nRF51822 EK.
По

Передача данных посредством Bluetooth осуществляется на частоте 2.4 ГГц. Данный диапазон разделен на 79 каналов. При этом, каждому из них предоставлена полоса, шириной 1 МГц. Все имеющиеся специализации используют синхронный, либо асинхронный вид связи.

Последние модификации (основные)

Bluetooth 2.0

Вышедший в ноябре 2004 года, Bluetooth 2.0 обладает еще большей скоростью передачи данных, а также имеет обратную совместимость с предшествующими версиями. Увеличенная скорость обеспечивается за счет использовании технологии EDR. Ее заявленная скорость равняется 3 Мб/с .Однако, как показывает практика, за счет данной технологии максимальная скорость передачи данных доходит лишь до 2.1 Мб/с . В версии 2.0 удалось добиться не только улучшения скорость, но и значительно увеличить помехоустойчивость, что в итоге помогло снизить и энергозатраты.

Помимо этого, 2.0 отличается упрощением подключения к ней нескольких устройств. Добиться этого удалось в следствие увеличения разрядности адресации. Это позволило подключаться по локальной сети не 8 устройствам, как прежде, а уже 256.

2.0 + EDR спецификация обладает следующими особенностями:

  1. Ускоряет скорость передачи данных по Bluetooth в 3 раза (в действительность на 2.1 Мб/с ).
  2. Добавление дополнительной полосы пропускания частично решило проблему подключения к Bluetooth сразу нескольких устройств.
  3. Уменьшились энергозатраты, в следствие уменьшения нагрузки.

Bluetooth 3.0

Спецификация Bluetooth 3.0 была принята в 2009 году и произвела настоящий фурор, так как скорость передачи данных при ее использовании доходит до 24 Мб/с . Возможным это стало в следствие применения в ней двух модулей, один из которых был обычным Bluetooth 2.0, а другой работающий по протоколу 802.11, поддерживая скорость до 24 Мб/с . При этом выбираемый для передачи данных модуль зависит от размера файла. Так, медленный канал используется для передачи небольших файлов, а высокоскоростной для больших.

Основной негативной стороной Bluetooth 3.0 + HS является слишком большое энергопотребление при работе. как ни странно, такой минус стандарта 3.0 связан с высокой скоростью его работы. Однако, стандарте 3.0 имеется и одно неоспоримое преимущество. А именно, это возможность работать по протоколу 802.11 или, проще говоря, Wi-Fi. Благодаря этому скорость передачи данных значительно увеличилась. В теории, используя версию 3.0 скорость соединения должна достигать 54 Мб/с .

Так, благодаря стандарту 3.0 можно будет в самые сжатые временные отрезки прокачивать данные DVD-объема. Тем не менее, по словам разработчиков реальная скорость стандарта 3.0 составляет 22–26 Мб/с .

Bluetooth 4.0

Преимуществом Bluetooth 4.0 по сравнению с предыдущей спецификацией является его уменьшенное энергопотребление. Скорость передачи данных при использовании стандарта 4.0 достигает 1 Мб/с (размер пакета 8-27 байт). Кроме того, скорость соединения устройств, совместимых с спецификацией 4.0, уменьшена до 5 миллисекунд, а расстояние, на которое возможна передача данных, достигает 100 метров . Также, стандарт 4.0 предоставляет достаточный уровень безопасности, который гарантирует 128-битное AES-расширение.

Преимущества Bluetooth 4.0:

  1. Совмещает в себе предшествующие протоколы. Поддерживает основные функции предыдущих протоколов.
  2. Увеличение скорости.
  3. Значительное уменьшение энергопотребления устройства, использующего стандарт 4.0, достигнутое за счет измененного алгоритма работы (передатчик включается только в тот момент, когда происходит передача данных).

Как правило, стандарт 4.0 больше подходит для миниатюрных электронных датчиков. К примеру, для наручных измерителях давления, температуры, для тренажеров, различных миниатюрных устройств с небольшой энергоемкостью.

Технология передачи данных на небольшие расстояния появилась еще в 1994 году, когда два инженера из компании Ericsson решили навсегда покончить с проводами при обмене данными между мобильными устройствами. Такая технология получила название Bluetooth («Синий зуб»). Название технология получила от имени Харольда Первого Синезубого, который был королем Дании и Норвегии, прославившегося объединив скандинавские племена под свое правление в Х веке.

Описание стандарта связи

Изначально разработка велась на частотах, которые не подлежат дополнительному лицензированию. Это 79 каналов, работающих на частотах от 2402 МГц до 2480 МГц, которые специально выделены для работы медицинского и научного оборудования.

Обмен информацией между приемником и передатчиков ведется путем постоянной смены каналов приблизительно 1600 раз в секунду. На какой канал произойдет переключение знает только приемное и передающее устройство, уведомление происходит посредством специальных ключей идентификации. Такой способ сводит возможность возникновения помех к минимуму и позволяет сопряженным устройствам не конфликтовать друг с другом. Стандарт bluetooth является одним из самых защищенных способов обмена информацией, ведь подключиться к устройству без разрешения невозможно. Единственной проблемой такого вида связи является очень маленький радиус действия, но с другой стороны это тоже увеличивает уровень безопасности.

По мощности радиопередатчиков стандарт делится на три большие группы или класса:

  • Класс 1 используется в основном в медицинском оборудовании, для работы которого хватает передатчика с очень маленько мощностью.
  • Класс 2 с передатчиками средней мощности можно увидеть в современных мобильных телефонах, планшетах и других периферийных устройствах.
  • Класс 3 использует очень мощные передатчики и находит свое применение на промышленных предприятиях, например, для управления отдельными станками или всем процессом производства в целом.

Подключение возможно не только между двумя устройствами. Количество одновременно подключенных устройств ограничивается 71-м аппаратом, при этом одно устройство выступает в роли главного или master устройством, а все остальные работают как ведущие (slave). Аппарат, который работает в качестве ведомого, в свою очередь может выступать ведущим для подключенных к нему. Так можно создавать целую сеть, которая называется пикосеть. Одновременно не может быть объединено более десяти пикосетей.

Эволюция стандарта

С момента появления стандарта в 94-м году, стандарт получил название Bluethooth 1.0. Это был еще очень сырой продукт. У него было очень много уязвимостей по безопасности из-за того, что необходимо было передавать в открытом виде адрес устройства. Так же сложности были с сопряжением девайсов от разных производителей. Скорость блютуз также оставляла желать лучшего. В версии 1.1 появилась возможность видеть уровень сигнала и была добавлена поддержка не шифрованных каналов.

Исследования постоянно продолжались, но следующая версия блютуз 2.0 появилась только в 2007 году. Была существенно увеличена скорость bluetooth , которая достигла почти 2,5 Мб/с, а в версии 2.1 были существенно переработаны и уменьшены параметры энергопотребления. Улучшена безопасность и скорость сопряжения устройств.

В апреле 2007 года был представлен стандарт Bluetooth 3.0. совместно с применением технологии асинхронного мультипроцессирования скорость обмена данными составила 24 Мб/с, но увеличилось энергопотребление. Увеличение энергопотребления не давало покоя разработчикам, ведь для мобильных устройств это довольно критический момент. После доработок в конце года широка общественность смогла увидеть bluetooth 4 , которая используется до сих пор.

Основное отличие от предыдущих версий это очень низкое потребление ресурса аккумулятора. Это достигается также тем, что сигнал передается не постоянно, а только по мере необходимости, т.е. передатчик находится в постоянном режиме ожидания, и включается в работу только при необходимости.

Соединение между устройствами теперь происходит за 5 мс, а расстояние между устройствами теперь может достигать 100 метров в пределах прямой видимости. Степень шифрования данных в блютуз 4 происходит по 128 битному алгоритму. Этот стандарт стал эталонным для подключения периферийных устройств, таких как наушники, внешние колонки, «умные» часы и многие другие.

В различных версиях bluetooth скорость передачи данных следующая:

  • 2 - до 1 Мб/с;
  • 0 - до 3 Мб/с;
  • 0 и v4.0 - до 24 Мб/с.

Производители стараются разрабатывать устройства таким образом, чтобы они поддерживали различные версии bluetooth , для большей совместимости между аппаратами.

Применение блютуз в быту

В настоящее время передача информации с использованием блютуз довольно популярна, и интерес к технологии постоянно растет. Можно назвать множество сфер деятельности где она нашла свое применение:

  • обмен данными между двумя мобильными телефонами;
  • загрузка фотографий с цифрового фотоаппарата без использования проводного подключения;
  • подключение мыши, клавиатуры, принтера, сканера и другой периферии к компьютеру или ноутбуку;
  • синхронизация данных между ПК и мобильным устройством;
  • подключение гарнитуры, смарт-часов и других устройств к мобильному телефону.

Фантазия разработчиков по поводу того, где можно использовать Bluetooth безгранична. Постоянно на рынок поставляются новые и новые изделия, поддерживающие работу по этой технологии.